3.476 \(\int (d \sec (e+f x))^m (b (c \tan (e+f x))^n)^p \, dx\)

Optimal. Leaf size=97 \[ \frac {\tan (e+f x) (d \sec (e+f x))^m \cos ^2(e+f x)^{\frac {1}{2} (m+n p+1)} \left (b (c \tan (e+f x))^n\right )^p \, _2F_1\left (\frac {1}{2} (n p+1),\frac {1}{2} (m+n p+1);\frac {1}{2} (n p+3);\sin ^2(e+f x)\right )}{f (n p+1)} \]

[Out]

(cos(f*x+e)^2)^(1/2*n*p+1/2*m+1/2)*hypergeom([1/2*n*p+1/2, 1/2*n*p+1/2*m+1/2],[1/2*n*p+3/2],sin(f*x+e)^2)*(d*s
ec(f*x+e))^m*tan(f*x+e)*(b*(c*tan(f*x+e))^n)^p/f/(n*p+1)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {3659, 2617} \[ \frac {\tan (e+f x) (d \sec (e+f x))^m \cos ^2(e+f x)^{\frac {1}{2} (m+n p+1)} \left (b (c \tan (e+f x))^n\right )^p \, _2F_1\left (\frac {1}{2} (n p+1),\frac {1}{2} (m+n p+1);\frac {1}{2} (n p+3);\sin ^2(e+f x)\right )}{f (n p+1)} \]

Antiderivative was successfully verified.

[In]

Int[(d*Sec[e + f*x])^m*(b*(c*Tan[e + f*x])^n)^p,x]

[Out]

((Cos[e + f*x]^2)^((1 + m + n*p)/2)*Hypergeometric2F1[(1 + n*p)/2, (1 + m + n*p)/2, (3 + n*p)/2, Sin[e + f*x]^
2]*(d*Sec[e + f*x])^m*Tan[e + f*x]*(b*(c*Tan[e + f*x])^n)^p)/(f*(1 + n*p))

Rule 2617

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*Sec[e +
f*x])^m*(b*Tan[e + f*x])^(n + 1)*(Cos[e + f*x]^2)^((m + n + 1)/2)*Hypergeometric2F1[(n + 1)/2, (m + n + 1)/2,
(n + 3)/2, Sin[e + f*x]^2])/(b*f*(n + 1)), x] /; FreeQ[{a, b, e, f, m, n}, x] &&  !IntegerQ[(n - 1)/2] &&  !In
tegerQ[m/2]

Rule 3659

Int[(u_.)*((b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> Dist[(b^IntPart[p]*(b*(c*Tan[e + f*x
])^n)^FracPart[p])/(c*Tan[e + f*x])^(n*FracPart[p]), Int[ActivateTrig[u]*(c*Tan[e + f*x])^(n*p), x], x] /; Fre
eQ[{b, c, e, f, n, p}, x] &&  !IntegerQ[p] &&  !IntegerQ[n] && (EqQ[u, 1] || MatchQ[u, ((d_.)*(trig_)[e + f*x]
)^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]])

Rubi steps

\begin {align*} \int (d \sec (e+f x))^m \left (b (c \tan (e+f x))^n\right )^p \, dx &=\left ((c \tan (e+f x))^{-n p} \left (b (c \tan (e+f x))^n\right )^p\right ) \int (d \sec (e+f x))^m (c \tan (e+f x))^{n p} \, dx\\ &=\frac {\cos ^2(e+f x)^{\frac {1}{2} (1+m+n p)} \, _2F_1\left (\frac {1}{2} (1+n p),\frac {1}{2} (1+m+n p);\frac {1}{2} (3+n p);\sin ^2(e+f x)\right ) (d \sec (e+f x))^m \tan (e+f x) \left (b (c \tan (e+f x))^n\right )^p}{f (1+n p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.18, size = 89, normalized size = 0.92 \[ \frac {\cot (e+f x) (d \sec (e+f x))^m \left (-\tan ^2(e+f x)\right )^{\frac {1}{2} (1-n p)} \left (b (c \tan (e+f x))^n\right )^p \, _2F_1\left (\frac {m}{2},\frac {1}{2} (1-n p);\frac {m+2}{2};\sec ^2(e+f x)\right )}{f m} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*Sec[e + f*x])^m*(b*(c*Tan[e + f*x])^n)^p,x]

[Out]

(Cot[e + f*x]*Hypergeometric2F1[m/2, (1 - n*p)/2, (2 + m)/2, Sec[e + f*x]^2]*(d*Sec[e + f*x])^m*(-Tan[e + f*x]
^2)^((1 - n*p)/2)*(b*(c*Tan[e + f*x])^n)^p)/(f*m)

________________________________________________________________________________________

fricas [F]  time = 0.47, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\left (\left (c \tan \left (f x + e\right )\right )^{n} b\right )^{p} \left (d \sec \left (f x + e\right )\right )^{m}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^m*(b*(c*tan(f*x+e))^n)^p,x, algorithm="fricas")

[Out]

integral(((c*tan(f*x + e))^n*b)^p*(d*sec(f*x + e))^m, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (\left (c \tan \left (f x + e\right )\right )^{n} b\right )^{p} \left (d \sec \left (f x + e\right )\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^m*(b*(c*tan(f*x+e))^n)^p,x, algorithm="giac")

[Out]

integrate(((c*tan(f*x + e))^n*b)^p*(d*sec(f*x + e))^m, x)

________________________________________________________________________________________

maple [F]  time = 1.25, size = 0, normalized size = 0.00 \[ \int \left (d \sec \left (f x +e \right )\right )^{m} \left (b \left (c \tan \left (f x +e \right )\right )^{n}\right )^{p}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*sec(f*x+e))^m*(b*(c*tan(f*x+e))^n)^p,x)

[Out]

int((d*sec(f*x+e))^m*(b*(c*tan(f*x+e))^n)^p,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (\left (c \tan \left (f x + e\right )\right )^{n} b\right )^{p} \left (d \sec \left (f x + e\right )\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^m*(b*(c*tan(f*x+e))^n)^p,x, algorithm="maxima")

[Out]

integrate(((c*tan(f*x + e))^n*b)^p*(d*sec(f*x + e))^m, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^m\,{\left (b\,{\left (c\,\mathrm {tan}\left (e+f\,x\right )\right )}^n\right )}^p \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d/cos(e + f*x))^m*(b*(c*tan(e + f*x))^n)^p,x)

[Out]

int((d/cos(e + f*x))^m*(b*(c*tan(e + f*x))^n)^p, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (b \left (c \tan {\left (e + f x \right )}\right )^{n}\right )^{p} \left (d \sec {\left (e + f x \right )}\right )^{m}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))**m*(b*(c*tan(f*x+e))**n)**p,x)

[Out]

Integral((b*(c*tan(e + f*x))**n)**p*(d*sec(e + f*x))**m, x)

________________________________________________________________________________________